第10回白眉セミナー : 『整数論とゼータ関数について』
  • 千田 雅隆(京都大学次世代研究者育成センター)
  • 2010/10/19 4:00pm
  • 次世代研究者育成センター(iCeMS西館2階 会議室)
  • 日本語

要旨

数学と聞くと難解なイメージを持たれる方もいらっしゃるかもしれませんが、私が研究を行っている整数論という分野ではフェルマーの最終定理をはじめとして、しばしば素朴な問題が研究対象になることがあります。例えば古くから研究されている整数論における重要な問題として素数の分布の問題があります。素数とはそれ自身と1以外に約数を持たない数のことですが、自然数の中で素数がどのように分布しているかということは簡単には分かりません。この問題に対して19世紀にリーマンはゼータ関数と呼ばれる関数を定義し、この関数の値の振る舞いが素数の分布を調べるのにとても重要な役割を果たすことを見抜きました。その研究の中でリーマンは、かの有名なリーマン予想にたどり着いたのでした。その後、19世紀の終わりごろにアダマールとド・ラ・ヴァレ・プーサンがゼータ関数の性質を調べることで素数の分布がどのようになっているのかを明らかにしました。この時に示されたのが素数定理と呼ばれるものです。しかしリーマンの残したリーマン予想は未だに解決しておりません。解決はまだまだ先のようです。

その後、ゼータ関数は様々な形に拡張され、現在では整数論における重要な研究対象となっています。私が研究を行っている保型L関数もゼータ関数の一種であり、クレイ数学研究所の提出した7つの重要な問題の一つであるBSD予想とも密接に関係しています(上で述べたリーマン予想もクレイ数学研究所の7大問題の一つです)。今回のセミナーでは、ゼータ関数と呼ばれる関数はどのようなものなのかということを説明すると共に、いくつかの具体例を通して私の研究の内容との関係についてお話しさせていただきたいと思います。

関連する研究者

千田 雅隆